KRZYSZTOF PLOTKA

functions are the only continuous solutions, was first proved by A. L. Cauchy [1

2

Proof. (i) Let f LIF(\mathbb{R}^n) and g AD(\mathbb{R}^n). Fix x_1, \ldots, x_k \mathbb{R}^n and q_1, \ldots, q_k Q

This choice is possible since

$$f \in F((h + f)[\{x : < \}] \{f(x)\}) (+1)/F/ < c.$$

It is easy to see that all the required properties of h are preserved. This ends the proof of ${\rm A}({\rm LIF}({\rm R}$

Notice here that A(LIF) = c (Fact 2.3 (v)) implies, in particular, that every function from $\mathbb{R}^{\mathbb{R}}$ can be written as the algebraic sum of two linearly independent functions. In other words LIF + LIF = $\mathbb{R}^{\mathbb{R}}$. Since we only found the upper bound for A(HF), it wo16Td[(can)-347(b)-27spper bo12313(A)-350((r)v(e)-350d[(y50((r))1(d))-1(.er)-470(tn)1(dg50((r))1(

Proof. Notice first that if /LC(f, 2)/= c then case (a) holds with $Z = \{0, 0\}$

From (•) we see that if $\operatorname{Lin}_{\mathbb{Q}}(x_1, x_2, x_3)$ $\operatorname{Lin}_{\mathbb{Q}}(X) = \{0\}$ holds for c-many then the set Z satisfies the condition $/ \sum_{z \in Z} \operatorname{LC}(f, 2, z) / = c$. Obviously $Z = [\mathbb{R}^n]^{< c}$. Thus, case (a) holds.

Summarizing the above discussion, we just need to consider a situation when $\dim(\{x_1, x_2, x_3\}) = 2$ and $\operatorname{Lin}_{\mathbb{Q}}(x_1, x_2, x_3) \quad \operatorname{Lin}_{\mathbb{Q}}(X) = \{0\}$ for all . Recall that $q_1x_1 + q_2x_2 + q_3x_3 = 0$, where $q_1, q_2, q_3 \quad \mathbb{Q} \setminus \{0\}$. If two of x_1, x_2, x_3 were dependent over \mathbb{Q} then we would have $\dim(\{x_1, x_2, x_3\}) = 1$. Thus, x_1, x_2, x_3 are pairwise independent. Now it is easy to see that case (b) holds.

Lemma 3.8. Let $X [\mathbb{R}^n]^{<\mathfrak{c}}$, x / X, and $y \mathbb{R}$. Suppose also that $h, g: X \mathbb{R}$ are functions linearly independent over \mathbb{Q} . Then there exist extensions h', g' of h and g onto $X \{x\}$ such that h' and g' are linearly independent over \mathbb{Q} and h'(x) + g'(x) = y.

Proof. Choose $h'(x) \in \text{Lin}_{\mathbb{Q}}(h[X] = g[X] \{y\})$. This choice is possible since $|\text{Lin}_{\mathbb{Q}}(h[X] = g[X] \{y\})| < c$. Then define g'(x) = y - h'(x). It is easy to d[(x)]TF89.963TfmF(x)]T3Tf-301.462

KRZYSZTOF PLOTKA

holds because $f(-a_0) + f(a_0) = c$ and $m_0 = c$ if c = 0. Thus $0, c, 0, m_0$ Lin_Q (h/A_0) Lin_Q (g/A_0) . It is easily seen that h/A_0 and g/A_0 satisfy (a) and (b). x dom(h) = dom(g) and v Lin_Q(h) Lin_Q(g), where h and g denote the extensions obtained in the step .

Let < c. Assume that $v \neq \text{Lin}_{Q}(a, h)$ Lin $_{Q}(a, g)$. Choose an a $\mathbb{R} \setminus \text{Lin}_{Q}(\text{dom}(a, h))$ and define h(x) by $0, h(x) = \frac{1}{2}v$ for $x \in \{-a, a\}$. Put also g(x) = f(x) - h(x). Since f(-a) + f(a) = LC(f), (3.3) implies that $v = \text{Lin}_{Q}(x)$ The inductive construction of functions *h* and *g* is somewhat similar to the one from the previous case. So assume that < c and the construction has been carried out for all < . If $v \neq Lin_{\mathbb{Q}}(h)$ then let X = dom(h) = dom(g) and $Y = [R]^{< c}$ be such a set that $Lin_{\mathbb{Q}}(g = \{v\}) = \mathbb{R}^n \times Y$. By Property 2 (b), there exist $p_1, p_2, p_3 = \mathbb{Q} \setminus \{0\}$ and pairwise independent $x_1, x_2, x_3 = \mathbb{R}^n$ such that

 ${}_{1}^{3}p_{i}x_{i} = 0, \text{Lin}_{\mathbb{Q}}(x_{1}, x_{2}, x_{3}) \text{Lin}_{\mathbb{Q}}(X) = \{0\}, \text{ and } {}_{1}^{3}p_{i}f(x_{i}) \neq Y.$

We extend h and g onto $\{x_1, x_2, x_3\}$. Choose $h(x_1), h(x_2), h(x_3) \in \mathbb{R}$ in such a way that

$${}^{3} p_{i} x_{i}, h(x_{i}) = 0, \quad {}^{3} p_{i} h(x_{i}) = v .$$

Then put $g(x_i) = f(x_i) - h(x_i)$ for i = 3. Obviously $v \operatorname{gLip}(h)$ pnd

*h*v+]TF119.963Tf10.