2 KRZYSZTOF PLOTKA

functions are the only continuous solutions, was first proved by A. L. Cauchy [\[1](#page-9-0)

Proof. (i) Let f LIF(Rⁿ) and g AD(Rⁿ). Fix $x_1, ..., x_k$ Rⁿ and $q_1, ..., q_k$ \bigcirc

This choice is possible since

$$
f_{\in F}((h+f)[\{x: < \cdot\}] \{f(x)\}) \quad (+1)|F| < c.
$$

It is easy to see that all the required properties of h are preserved. This ends the proof of A(LIF(R

Notice here that $A(LIF) = c$ (Fact [2.3](#page-1-0) (v)) implies, in particular, that every function from R^R can be written as the algebraic sum of two linearly independent functions. In other words LIF + LIF = $R^{\overline{R}}$. Since we only found the upper bound for A(HF), it wo16Td[(can)-347(b)-27spper bo12313(A)-350((r)v(e)-350d[(y50((r))1(d))-1(.er)-470(tn)1(dg50((r Proof. Notice first that if $/LC(f, 2)$ = c then case (a) holds with $Z = \{0\}$

From (•) we see that if $\text{Lin}_{\mathbb{Q}}(x_1, x_2, x_3)$ $\text{Lin}_{\mathbb{Q}}(\mathcal{X}) = \{0\}$ holds for c-many then the set Z satisfies the condition $\int_{z \in Z}$ LC(f, 2, z) = c. Obviously Z [R n ^{-c}. Thus, case (a) holds.

Summarizing the above discussion, we just need to consider a situation when dim $(\{x_1, x_2, x_3\}) = 2$ and $\text{Lin}_{\mathbb{Q}}(x_1, x_2, x_3)$ $\text{Lin}_{\mathbb{Q}}(\mathcal{X}) = \{0\}$ for all \blacksquare . Recall that $q_1x_1 + q_2x_2 + q_3x_3 = 0$, where $q_1, q_2, q_3 \subset \mathbb{C} \setminus \{0\}$. If two of x_1, x_2, x_3 were dependent over \bigcirc then we would have dim $({x_1, x_2, x_3})$ 1. Thus, x_1, x_2, x_3 are pairwise independent. Now it is easy to see that case (b) holds. П

Lemma 3.8. Let X $[\mathbb{R}^n]^{< c}$, $x \, / \, X$, and y R. Suppose also that $h, g: X$ R are functions linearly independent over Q . Then there exist extensions H , g' of h and g onto X $\{x\}$ such that h' and g' are linearly independent over \bigcirc and $h'(x) + g'(x) = y.$

Proof. Choose $h'(x) \in R \setminus \text{Lin}_{\mathbb{Q}}(h[X] \mid g[X] \mid \{y\})$. This choice is possible since \int Lin_Q(h[X] $g[X]$ {y})/ < c. Then define $g'(x) = y - h'$ (x) . It is easy to d[(x)]TF89.963TfmF (x)]T3Tf-301.46.

8 KRZYSZTOF PLOTKA

holds because $f(-a_0) + f(a_0) = c$ and $m_0 = c$ if $c = 0$. Thus 0, c, 0, m_0 $\textsf{Lin}_{\textsf{Q}}(h/A_0)$ Lin $_{\textsf{Q}}(g/A_0)$. It is easily seen that h/A_0 and g/A_0 satisfy (a) and (b).

x dom(h) = dom(g) and v Lin_Q(h) Lin_Q(g), where h and g denote the extensions obtained in the step .

Let $\langle c \rangle$ assume that ν \angle Lin_Q($\langle d \rangle$ h) Lin_Q($\langle g \rangle$). Choose an a R \ Lin_Q(dom(\lt h)) and define h(x) by 0, h(x) = $\frac{1}{2}v$ for x {-a, a}. Put also $g(x) = f(x) - h(x)$. Since $f(-a) + f(a)$ LC(f), [\(3](#page-6-0).3) implies that v Lin_Q(x

The inductive construction of functions h and g is somewhat similar to the one from the previous case. So assume that $\leq c$ and the construction has been carried out for all \langle . If ν / Lin_Q(h) then let $X = \text{dom}(h) = \text{dom}(g)$ and Y $[R]^{< c}$ be such a set that $\text{Lin}_{Q}(g \{V\})$ $\mathbb{R}^{n} \times Y$. By Property 2 (b), there exist $p_1, p_2, p_3 \subset \mathcal{A}$ {0} and pairwise independent x_1, x_2, x_3 Rⁿ such that

 $\int_{1}^{3} p_i x_i = 0$, Lin_Q(x₁, x₂, x₃) Lin_Q(X) = {0}, and $\int_{1}^{3} p_i f(x_i)$ / Y.

We extend h and g onto $\{x_1, x_2, x_3\}$. Choose $h(x_1)$, $h(x_2)$, $h(x_3)$ R in such a way that

$$
\begin{array}{cccc}\n3 & & \\
p_i \, x_i, h(x_i) & = & 0, \\
1 & & 1\n\end{array}\n\quad\n\begin{array}{cccc}\n3 & & \\
p_i h(x_i) & = & V \, . \\
1 & & 1\n\end{array}
$$

Then put $g(x_i) = f(x_i) - h(x_i)$ for *i* 3. Obviously v gLing(

h