The ideal of Sierpiński-Zygmund sets on the plane

Krzysztof Plotka* Department of Mathematics, West Virginia University Morgantown, WV 26506-6310, USA kplotka@math.wvu.edu

and Institute of Mathematics, Gdańsk University Wita Stwosza 57, 80-952 Gdańsk, Poland

June 27, 2001

Abstract

We say that a set $X = \mathbb{R}^2$ is *Sierpiński-Zygmund* (shortly *SZ-set*) if it does not contain a partial continuous function of cardinality continuum c. We observe that the family of all such sets is cf(c)-additive ideal. Some examples of such sets are given. We also consider *SZ-shiftable sets*, that is, sets $X = \mathbb{R}^2$ for which there exists a function $f: \mathbb{R} = \mathbb{R}$ such that f + X is an SZ-set. Some results are proved about SZ-shiftable sets. In particular, we show that the union of two SZ-shiftable sets does not have to be SZ-shiftable.

The terminology is standard and follows [2]. The symbol \mathbb{R} stands for the set of all real numbers. The cardinality of a set X we denote by |X|. In particular, $|\mathbb{R}|$ is denoted by c. Given a cardinal , we let cf() denote the cofinality of . We say that a cardinal is regular provided that cf() = .

A set $M ext{ } \mathbb{R}^n$ is called *Marczewski measurable* if every perfect set P has a perfect subset Q such that $Q ext{ } M$ or $Q ext{ } M =$. If every perfect set P has a perfect subset Q such that $Q ext{ } M =$, then M is called *Marczewski null*.

We consider only real-valued functions unless stated otherwise. No distinction is made between a function and its graph. For any planar set Y, we denote its *x*-projection by dom(Y). For any two partial real functions f, g we write f + g, f - g

 $g \mathbb{R}^{X}$, any family of functions $F \mathbb{R}^{X}$, and any set $A X \times \mathbb{R}$ we define $g + F = \{g + f : f F\}$ and $g + A = \{x, g(x) + y : x, y A\}$. The image and preimage of a set B under the function h are denoted by h[B] and $h^{-1}[B]$, respectively.

Let us recall that a function $f: \mathbb{R} \quad \mathbb{R}$ is *Sierpiński-Zygmund* ($f \quad SZ$) if for every set $X \quad \mathbb{R}$ of cardinality continuum c, f/X is discontinuous. This definition is generalized onto subsets of \mathbb{R}^2 . (See [8].)

Definition 1 A set $X = \mathbb{R}^2$ is called *Sierpiński-Zygmund* set (shortly *SZ-set*), if for every partial real continuous function f we have |f = X| < c.

We denote the family of all SZ-sets by J_{SZ} . Since every Sierpiński-Zygmund function is also an SZ-set we have that the family J_{SZ} is not empty.

The next fact follows directly from the definition.

Fact 2 J_{SZ} is a cf(c)-additive ideal.

PROOF. It is obvious that J_{SZ} is closed under the operation of taking subsets. We will show that *szsets* is cf(c)-additive.

Take a < cf(c). Let $\{X : < \}$ J_{SZ} and $f \bigcup_{<} X$ be a partial continuous function. Since X is SZ-set, we have that |f X| < c for each < . Consequently, $|f \bigcup_{<} X| = |\bigcup_{<} (f X)| < c$.

The question that one could ask here is how "big" an SZ-set can be. An example of the SZ-set that can be considered "big" in some sense is given in [8].

Lemma 3 [8, Lemma 19] There exists an SZ-set $X = \mathbb{R}^2$ such that $|\mathbb{R} \setminus X_x| < c$ for every

We claim that there exists an $A \quad [\mathbb{R}]^{-1}$ such that $/\bigcup_{y \in A} X^{y}/< c$. The following two cases are possible.

Case 1. There exists a $\langle c$ such that $Z = \{y: |X^y| = \}$ is uncountable. Then we choose $A \quad [Z] \quad 1$. Obviously, $|\bigcup_{y \in A} X^y| = \quad 1 < c$. **Case 2.** |Z| for every cardinal $\langle c$. Put $Z = \{|X^y|: y \in \mathbb{R}\}$ and observe that $\mathbb{R} = \bigcup_{z \in Z} Z$. It follows from () that if Z then < c. Consequently, since the union of less than continuum many countable sets has size less than continuum, we conclude that |Z| = c. Let be the 1-st element of Z. We define $A = \{y: [Z$

any more. However, if $h: \mathbb{R}^2 = \mathbb{R}^2$ is a homeomorphism preserving vertical lines then h[X] is an SZ-set for every $X = J_{SZ}$.

Fact 6 Let $h: \mathbb{R}^2 = \mathbb{R}^2$ be an homeomorphism such that h[L] is a vertical line for every vertical line *L*. Then $h\{J_{SZ}\} = \{h[X]: X = J_{SZ}\} = J_{SZ}$.

PROOF. First we show the inclusion $h\{J_{SZ}\}$ J_{SZ} . It is easy to see that if $f: A \ \mathbb{R}$ is a partial continuous function then $h^{-1}[f]: A \ \mathbb{R}$ is also continuous. This implies that for every $X \ J_{SZ}$, h[X] is also in J_{SZ} .

Now to show the other inclusion, let us fix a $Y = J_{SZ}$. Note that h^{-1} also preserves all vertical lines. Thus, from the first part of the proof, $X = h^{-1}[Y] = J_{SZ}$. Hence $Y = h[X] = h\{J_{SZ}\}$.

As we mentioned at the beginning of this paper, the concept of Sierpiński-Zygmund sets is a generalization of the concept of Sierpiński-Zygmund functions. One of the questions related to the family SZ of Sierpiński-Zygmund functions is for how "big" families $F \quad \mathbb{R}^{\mathbb{R}}$ we can find a function $g \quad \mathbb{R}^{\mathbb{R}}$ such that $g + F \quad$ SZ. (See e.g. [3].) Similar question can be asked in the case of Sierpiński-Zygmund sets. This leads to the following definition.

Definition 7 A set $X = \mathbb{R}^2$ is called SZ-*shiftable*, if there exists a function $f: \mathbb{R} = \mathbb{R}$ such that f + X is SZ-set.

We denote the family of all SZ-shiftable sets by SZ_{shift} . Obviously J_{SZ} SZ_{shift} , so SZ_{shift} is not empty.

Lemma 8 Let $X extsf{R}^2$. If for all $x extsf{R}$ and $A extsf{[R]}^{<c}$ there exists an $a extsf{R}$ such that $(a + A) extsf{X}_x =$, then A is SZ-shiftable.

PROOF. Let x : < c and f : < c be the sequences of all real numbers and all continuous functions defined on a G subset of \mathbb{R} , respectively. We will define a function $f: \mathbb{R} \quad \mathbb{R}$ which shifts X into J_{SZ} , using transfinite induction. For every < c we choose $f(x) \quad \mathbb{R}$ with themp300.043 That 74 0 Td[3Tf .27 0 Td[(an28 0 Td[(w)28(e)-357(c) It may also be of interest to determine whether SZ_{shift} is closed under the union operation. Fact 2 states, in particular, that the union of two SZ-sets is also an SZ-set. Thus, the natural question that appears here is whether the same is true for SZ-shiftable sets. It turns out not to be the case.

Example 10 There exist A_1, A_2 SZ_{shift} such that $A_1 = \mathbb{R}^2 SZ_{shift}$.

PROOF. Put A_1 to be the set X from Lemma 3 and A_2 to be its complement. Based on Lemma 8 A_2 is SZ-shiftable. Next, notice that $A_1 \quad J_{SZ} \quad SZ_{shift}$. Finally, $A_1 \quad A_2 = \mathbb{R}^2$ and obviously \mathbb{R}^2 is not in SZ_{shift} .

Before we finish let us make a comment about [8, Theorem 2 (1)] which says: MA implies that for every finite family F of real functions there exists an almost continuous function g (each open subset of \mathbb{R}^2 containing the graph of g contains also the graph of a continuous function) such that g + f is Sierpiński-Zygmund for every f = F. Note that this result can be expressed using the notion of SZ-sets. Under MA the following holds:

If, for some fixed n, every vertical section of the set $X \mathbb{R}^2$ has at most n elements then there exists an almost continuous function $f: \mathbb{R} \mathbb{R}$ such that $f + X J_{SZ}$.

We generalize the above result.

Theorem 11

Lemma 13 (MA) Let F F_A be a family such that |F| c. There exists a g SZ(A) such that g + F SZ(A) and for every blocking set B \mathbb{R}^2 there is a non-empty open interval I_B dom(B) with the property that dom(B g) is dense in I_B .

Lemma 14 [8, Lemma 13] (MA) Let $\{f_i\}_1^n \in \mathbb{R}^{\mathbb{R}}$, n = 1, 2, ... There exists $\{f_i\}_1^n \in F_A$ such that $f_i/A_i \in C_{<c}(A_i)$, where $A_i = [f_i = f_i]$.

Note that Lemmas 13 and 14 imply the following.

() (MA) Assume that $F ext{ } \mathbb{R}^{\mathbb{R}}$ is finite and $A ext{ } \mathbb{R}$ is everywhere of second category. Then there exists a function $g: A ext{ } \mathbb{R}$ such that $g + F ext{ } SZ(A)$ and dom $(g ext{ } B)$ is dense in some non-empty open interval I_B for every blocking set B.

PROOF. Let us consider the partition $\{H_n: n\}$ of \mathbb{R} , where H_n is defined by $H_n = \{x \ \mathbb{R}: |X_x| = n\}$. Let $G_n \ \mathbb{R}$ be a maximal open set such that H_n is everywhere of second category in G_n . Such a set can be easily constructed. Simply define G_n as the interior of the set $\mathbb{R} \setminus \bigcup_{I \in I_n} I$, where I_n is the set of all open intervals in which H_n is meager.

We claim that for every $n < \cdot$, there exists a function $g_n: (G_n \ H_n) \ \mathbb{R}$ such that $g_n + X = \{x, g_n(x) + y : x \ (G_n \ H_n), x, y \ X\} \ J_{SZ}$ and $\bigcup_{n < -g_n} f_n$ intersects every blocking set B.

First observe that this claim implies the conclusion of the theorem. Put $g: \mathbb{R} \quad \mathbb{R}$ to be an extension of $\bigcup_{n <} g_n$ such that $[g/(\mathbb{R} \setminus \bigcup_{n <} G_n \quad H_n)] + X$ is an SZ-set. This extension exists based on Corollary 9. Thus, g + X is the union of countable many SZ-sets. Consequently, $g + X \quad J_{SZ}$. Clearly, g intersects every blocking set, so g is almost continuous.

To complete the proof we need to show the above claim. Fix an n < and put $A_n = (G_n \ H_n) \ \bigcup_{I \ I_n} I$. The set A_n is everywhere of second category. Notice also that the part of X contained in $(G_n \ H_n) \times \mathbb{R}$ can be covered by n functions f_1, \ldots, f_n from \mathbb{R} to \mathbb{R} . So, by (), there exists a function $g_n: A_n \ \mathbb{R}$ such that $g_n + \{f_1, \ldots, f_n\}$ SZ(A_n) and dom $(g_n \ B)$ is dense in some non-empty open interval I_B for every blocking set B. Thus, if we define $g_n = g_n/(G_n \ H_n)$ then $g_n + X \ J_{SZ}$.

What remains to prove is that $\bigcup_{n < g_n} g_n$ intersects every blocking set *B*. Notice that I_B $G_n =$ for some *n*. Thus, g_n B =. Consequently, $= B \bigcup_{n < g_n} g_n$ B = g. This finishes the proof.

References

- M. Balcerzak, K. Ciesielski, T. Natkaniec, *Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road*, Arch. Math. Logic **37** (1997), 29–35.
- [2] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997.

- [3] K. Ciesielski, T. Natkaniec, *Algebraic properties of the class of Sierpiński-Zygmund functions*, Topology Appl. **79** (1997), 75–99.
- [4] K. Kuratowski, Topologie I, Warszawa 1958.
- [5] T. Natkaniec, *Almost Continuity*, Real Anal. Exchange **17** (1991-92), 462– 520.
- [6] J.C. Oxtoby, *Measure and Category*, Springer-Verlag, Amsterdam 1971.
- [7] K. Plotka, Set-theoretic and Algebraic Properties of Certain Families of Real Functions, Ph.D. Dissertation, West Virginia University, Morgantown (2001). URL: http://etd.wvu.edu/templates/showETD.cfm? recnum=2013 66 pages.
- [8] K. Plotka, Sum of Sierpiński-Zygmund and Darboux Like functions, Topology Appl., to appear. Preprint available at http://www.math.wvu.edu/ ~kci es/STA/STA.html.