Krzysztof Plotka, Department of Mathematics, University of Scranton, Scranton, PA 18510, USA e-mail: Krzysztof. Plotka@Scranton.edu

Ireneusz Reclaw, Institute of Mathematics, Gdańsk University Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: recl aw@math.univ.gda.pl

Finitely Continuous Hamel Functions

Abstract

A function $h: \mathbb{R}^n \to \mathbb{R}^k$ is called a Hamel function if it is a Hamel basis for \mathbb{R}^{n+k} . We prove that there exists a Hamel function which is finitely continuous (its graph can be covered by finitely many partial continuous functions). This answers the question posted in [KP].

We consider functions with values in R^k . No distinction is made between a function and its graph. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ be a function and c be a cardinal number. We say that the function f is a Hamel function if f , considered as a subset of R^{n+k} , is a Hamel basis for R^{n+k} . The function f is called -continuous if it can be covered by the union of many partial continuous functions from R^n . We write f/A for the restriction of f to a set A \quad R^n . For \overline{B} ⁿ, the symbol Lin_Q(B) stands for the smallest linear subspace of Rⁿ over \bigcirc that contains B .

In [KP], it was asked whether there exists a Hamel function which is continuous (Problem 3.2). We give an a rmative answer to this question.

Theorem 1. There exists a Hamel function $h : \mathbb{R}^n$ $n \in \mathbb{R}^k$ which is $(n+2)$ continuous $(k, n, 1)$.

Let us mention here that it is unknown whether the number $(n + 2)$ is

To prove Theorem 1, we will need the following lemma.

Lemma 3 Let H Rⁿ be a Hamel basis. Assume that h: Rⁿ R k is such that h|H 0. Then h is a Hamel function i $h/(R^n \setminus H)$ is one-to-one and $h[\mathbb{R}^n \setminus H]$ \mathbb{R}^k is a Hamel basis.

Proof. First assume that h is a Hamel function. We will show that $h/(R^n \Lambda H)$ is a bijection onto a Hamel basis. Let $y \in \mathbb{R}^k$. There exist $x_1, \ldots, x_j \in \mathbb{R}^n$ and $q_1, \ldots q_j$ Q such that $\frac{j}{1} q_i h(x_i) = y$. But since h/H Q we get $y = \begin{array}{cc} & j \\ & 1 \end{array}$ $q_i h(x_i) = \frac{1}{x_i \notin H} q_i h(x_i)$. Hence Lin_Q(h[Rⁿ \ H]) = R^k.

Next suppose that $\frac{1}{1} p_i h(x_i) = 0$ for some distinct x_1, \ldots, x_l (Rⁿ \ H) and $p_1, \ldots p_l$ Q. Since H Rⁿ is a Hamel basis, there exist x_{l+1}, \ldots, x_m H and p_{l+1}, \ldots, p_m Q such that $\binom{m}{l+1} p_i x_i = -\frac{l}{1} p_i x_i$. Recall that h/H 0, hence $\int_{1}^{m} p_i(x_i, h(x_i)) = (0, 0)$. Since *h* is a Hamel function we conclude that $p_i = 0$ for all $i = 1, ..., m$. This finishes the proof that $h/(R^n \setminus H)$ is a bijection onto a Hamel basis.

Now we prove the converse. To see that h is a Hamel function, first observe that the graph of h is linearly independent over Q . Indeed, let

 $\int_{1}^{r} q_i(x_i, h(x_i)) = 0$ for some $x_1, \ldots, x_r \in \mathbb{R}^n$ and $q_1, \ldots, q_r \in \mathbb{Q}$. Then

$$
q_{i}(x_{i}, h(x_{i})) = q_{i}(x_{i}, h(x_{i})) + q_{i}(x_{i}, h(x_{i})) = x_{i} \notin H
$$

\n
$$
q_{i}(x_{i}, 0) + q_{i}(x_{i}, h(x_{i})) = 0.
$$

\n
$$
x_{i} \in H
$$

\n
$$
x_{i} \notin H
$$

\n
$$
x_{i} \notin H
$$

Hence $x_i \notin H q_i h(x_i) = 0$. Since $h/(R^n \setminus H)$ is a bijection onto a Hamel basis, we conclude that $q_i = 0$ for x_i H. Consequently, $x_i \in H$ $q_i x_i = 0$. This implies that $q_i = 0$ for x_i H.

To see that $\text{Lin}_{\mathbb{Q}}(h) = \mathbb{R}^{n+k}$, choose $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^k$. Since $h[\mathbb{R}^n \setminus H]$ is a Hamel basis for R^k , there exist x_1, \ldots, x_s R^n and p_1, \ldots, p_s Q such that $\int_{1}^{s} p_i h(x_i) = y$. Similarly, since H is a Hamel basis for Rⁿ, there exist x_{s+1}, \ldots, x_t H Rⁿ and p_{s+1}, \ldots, p_t Q such that $\frac{t}{s+1} p_i x_i = x - \frac{s}{1} p_i x_i$. Next observe that $\frac{t}{1} p_i h(x_i) = \frac{s}{1} p_i h(x_i) = y$ by the assumption h/H 0. Finally, we obtain $\frac{t}{1}p_i(x_i, h(x_i)) = (x, y)$. So Lin $\Omega(h) = \mathbb{R}^{n+k}$. Proof of Theorem 1. Let $P = \{(x, 0, ..., 0) \mid \mathbb{R}^k : x \in \mathbb{Q}\}\)$ be a perfect

set linearly independent over \bigcirc (see e.g., [MK, Theorem 2, p. 270]) and Y (R $\{Q\}^k$ be Hamel basis such that \overline{P} Y. The existence of such a basis follows from the fact that $\mathsf{Lin}_\mathbb{Q}((R \setminus \mathbb{Q})^k) = \mathbb{R}^k$ and the fact from elementary

linear algebra that every linearly independent set can be extended to a linear basis. Next choose a Hamel basis $H - (R \setminus \{0\}) \times R \times \cdots \times R$ Rⁿ such that H is dense in Rⁿ (such a basis exists because $\text{Lin}_{\mathbb{Q}}((R \setminus \{0\}) \times R \times \cdots \times R) = R^n$). Since $X = \mathbb{R}^n \setminus H$ has topological dimension $(n-1)$ (as the complement of a dense set; see [HW, Theorem IV.3 p. 44]), it can be decomposed into n 0-dimensional spaces E_1, \ldots, E_n (see [HW, Theorem III.3 p. 32]). For every perfect set $Q \t R$ and 0-dimensional space E , there exists an embedding q: E Q. (See e.g., [HW, Theorem V.6 p. 65].) Hence, if $P = P_1 \quad P_2$ \ldots P_n is a partition of P into n perfect sets, then there exists an embedding $g_{P_i}^{E_i}: E_i$ P_i for every i n. Now define $g_1 = \frac{n}{1} g_{P_i}^{E_i}: X$ Y and note that it is an injective n -continuous function. Next, since Y is also 0-dimensional (as a subset of a 0-dimensional space $(R \setminus Q)^k$), it can be embedded into any perfect set, hence also into the set X. Let g_2 : $Y \times X$ be an embedding. Now, following the proof of Cantor-Bernstein Theorem, define a function $f: X \rightarrow Y$ by

$$
f(x) = \begin{cases} g_1(x) & \text{if } x \in A \\ g_2^{-1}(x) & \text{if } x \in A, \end{cases}
$$

where $A_0 = g_2[Y \setminus g_1[X]]$, $A_{m+1} = g_2[g_1[A_m]]$ for $m = 0$, and $A = \sum_{m=0}^{\infty} A_m$. The function f is a bijection. To see this observe that $g_1[X \setminus A] = g_1[X] \setminus g_1[A]$ and

$$
g_2^{-1}[A] = \int_{m=0}^{\infty} g_2^{-1}[A_m] = (Y \setminus g_1[X]) \quad \text{or} \quad g_1[A_m]
$$

= (Y \setminus g_1[X]) \quad g_1[A]. \quad m=0

Hence $g_1[X \setminus A]$ $g_2^{-1}[A] =$ and $g_1[X \setminus A]$ $g_2^{-1}[A] = Y$. Since both g_1 and g_2^{-1} are injections, the latter implies that f is bijective.

Now, by recalling that g_1 is n-continuous and g_2^{-1} is continuous, we conclude that f is $(n + 1)$ -continuous. Finally, we define h: Rⁿ R by

$$
h(x) = \begin{cases} 0 & \text{if } x \ H \\ f(x) & \text{if } x \ H. \end{cases}
$$

It follows from Lemma 3 that h is a Hamel function. Obviously, h is $(n + 2)$ continuous.

References

- [HW] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.
- [MK] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers, PWN, Warszawa, 1985.
- [KP] K. Plotka, On functions whose graph is a Hamel basis, Proc. Amer. Math. Soc. 131 (2003), 1031–1041.

4